

Disclosures

• Consultancies: Apogee, Astra Zeneca, Avalyn, Intellia Therapeutics, Pieris Pharmaceuticals, Regeneron, Sanofi, Verona Pharma, Vertex

- Quantitative Imaging Solutions: Co-founder of a consulting group and software development LLC for image analytics and data management
- Sponsors: Boehringer Ingelheim, DoD, Lung Biotechnology, NIH/NHLBI

My wife works for Biogen

Wilhelm Rontgen: Nov 8 1895

Major John Hall Edwards

The Story of Radiology, Volume 2. European Society of Radiology

The exponential of imaging....

MRI CT

X-Ray

Past/Present/Future

Parenchyma

- Emphysema
- ILD
- Vasculature
 - Pulmonary embolism
 - Vasculopathy
- Airways
 - Mucus Plugs
 - Bronchiectasis
- Lung Cancer
- Body Composition
- Intrinsic Susceptibility

Emphysema

NETT Results: Mortality

Upper-lobe disease and low exercise capacity

High-risk patients excluded

Endobronchial Valves

Degree of Heterogeneity	Percent Change in 6MWT (Treatment-Control)	Point Estimate (95% CI)	P Value
≥25%		16.2 (3.8 to 28.5)	0.009
≥15% to <25%		8.1 (-1.6 to 17.8)	0.10
≥6% to <15%		-2.7 (-16 to 10.6)	0.67
<6%		0.7 (-7.8 to 9.2)	0.89
-20	-10 0 10 20 30		

NEJM 2010;363:1233-44.

Response to Therapy

Interstitial Lung Disease

IPF suspected*		Histopathology pattern				
		UIP	Probable UIP	Indeterminate for UIP	Alternative diagnosis	
HRCT pattern	UIP	IPF	IPF	IPF	Non-IPF dx	
	Probable UIP	IPF	IPF	IPF (Likely)**	Non-IPF dx	
	Indeterminate for UIP	IPF	IPF (Likely)**	Indeterminate for IPF***	Non-IPF dx	
	Alternative diagnosis	IPF (Likely)** /non-IPF dx	Non-IPF dx	Non-IPF dx	Non-IPF dx	

Interstitial Lung Abnormalities

Interstitial Lung Abnormalities (ILA)

- 3-7% of adults over 50
- Subtypes are progressive
- Associated with MUC5B
- Associated with adverse outcomes
 - All cause and respiratory mortality

NEJM 2013;368:2192-2200.

JAMA 2016;315:672-681.

Interstitial Lung Abnormalities

Table 3. Association between Imaging Features and ILA Progression

	Unadjusted A	Analysis	Adjusted Analysis*		
	OR (95% CI)	P Value	OR (95% CI)	P Value	
Centrilobular nodules Ground glass [†] Subpleural reticular markings Nonemphysematous cysts Lower lobe predominant changes Traction bronchiectasis Honeycombing [‡]	0.2 (0.1–0.4) — 5.9 (2.3–15) 3.1 (1.6–5.9) 5.2 (1.8–15) 5.9 (2.3–14.9) —	<0.0001 0.0002 0.0005 0.002 0.0002 —	0.2 (0.1–0.5) — 6.6 (2.3–19) 2.5 (1.3–5.1) 6.7 (1.8–25) 6.6 (2.3–19) —	0.0002 0.0004 0.009 0.004 0.0004 —	

For definition of abbreviations, see Table 2.

^{*}Adjusted for age, sex, body mass index, pack-years smoking, current smoking status, and MUC5B genotype.

[†]Odds of progression cannot be calculated for ground glass because all participants with ILA had ground glass on computed tomography scan.

[‡]Odds of progression cannot be calculated because all participants with honeycombing had evidence of imaging progression.

Collagen-Targeted PET

B

AJRCCM 2019;200(2):28-261.

FVCpp

3 - 1.4

Baseline in FVCpb

(%)

1.4

Baseline in FVCpb

1.4

-2.6

160mg Placebo
(n=7)

Treatment

Mean Change from Baseline in Uptake of Collagen PET Tracer After 12 Weeks

Past/Present/Future

- Parenchyma
 - Emphysema
 - ILD
- Vasculature
 - Pulmonary embolism
 - Vasculopathy
- Airways
 - Mucus Plugs
 - Bronchiectasis
- Lung Cancer
- Body Composition
- Intrinsic Susceptibility

Pulmonary Embolism

CTEPH – Balloon Therapy

CTEPH – Balloon Therapy

Response to Ultrasound Assisted Catheter Based PE Therapy (EKOS) SEATTLE II

RV: 167ml

LV: 119ml

RV: 134ml

LV: 165ml

At Risk for PAH?

Past/Present/Future

- Parenchyma
 - Emphysema
 - II D
- Vasculature
 - Pulmonary embolism
 - Vasculopathy
- Airways
 - Mucus Plugs
 - Bronchiectasis
- Lung Cancer
- Body Composition
- Intrinsic Susceptibility

Mucus Dysfunction

Mucus Plugs - Asthma

Mucus Plugs - Asthma

Luminal Plugging on Chest CT Scan

Check for updates

Association With Lung Function, Quality of Life, and COPD Clinical Phenotypes

Yuka Okajima, MD, MPH; Carolyn E. Come, MD, MPH; Pietro Nardelli, PhD; Sushil K. Sonavane, MD; Andrew Yen, MD; Hrudaya P. Nath, MD; Nina Terry, MD; Scott A. Grumley, MD; Asmaa Ahmed, MD; Seth Kligerman, MD; Kathleen Jacobs, MD; David A. Lynch, MD; Barry J. Make, MD; Edwin K. Silverman, MD, PhD; George R. Washko, MD; Raúl San José Estépar, PhD; and Alejandro A. Diaz, MD, MPH

Prevalence of mucus plugging in COPD 25%-67%

Clinical Impact

- FEV1 % pred (-6%)
- **■** HRQL (-4.9)
- Emphysema (OR=2.6)

Persistence of mucus plugs

-67% at 1 year

Okajima, Chest 2020; Dunican, AJRCCM 2021

Airway Disease - Asthma

Pruning of the Pulmonary Vasculature in Asthma

The Severe Asthma Research Program (SARP) Cohort

Samuel Y. Ash^{1,2*}, Farbod N. Rahaghi^{1,2*}, Carolyn E. Come^{1,2}, James C. Ross², Alysha G. Colon³, Juan Carlos Cardet-Guisasola⁴, Eleanor M. Dunican⁵, Eugene R. Bleecker⁶, Mario Castro⁷, John V. Fahy⁸, Sean B. Fain^{9,10,11}, Benjamin M. Gaston^{12,13}, Eric A. Hoffman^{14,15,16}, Nizar N. Jarjour¹⁷, David T. Mauger¹⁸, Sally E. Wenzel¹⁹, Bruce D. Levy¹, Raul San Jose Estepar², Elliot Israel^{1,‡}, and George R. Washko^{1,2‡}; for the SARP Investigators

Bronchiectasis

Breathe; 15:190-197.

Bronchiectasis

Bronchiectasis

Past/Present/Future

- Parenchyma
 - Emphysema
 - II D
- Vasculature
 - Pulmonary embolism
 - Vasculopathy
- Airways
 - Mucus Plugs
 - Bronchiectasis
- Lung Cancer
- Body Composition
- Intrinsic Susceptibility

Lung Cancer

Lung Cancer

Past/Present/Future

- Parenchyma
 - Emphysema
 - ILD
- Vasculature
 - Pulmonary embolism
 - Vasculopathy
- Airways
 - Mucus Plugs
 - Bronchiectasis
- Lung Cancer
- Body Composition
- Intrinsic Susceptibility

Bone Mineral Density

N=3321 current and ex-smokers in COPDGene

Low volumetric bone mineral density (vBMD)

58% of all subjects

84% of subjects with very severe COPD

Males had greater risk of low vBMD (-2.5 SD below young adult mean by QCT)

Males with more vertebral fractures

Past/Present/Future

- Parenchyma
 - Emphysema
 - II D
- Vasculature
 - Pulmonary embolism
 - Vasculopathy
- Airways
 - Mucus Plugs
 - Bronchiectasis
- Lung Cancer
- Body Composition
- Intrinsic Susceptibility

Trajectories of Lung Function

Innate Lung Structure?

"Featureless" Image Analysis

Outcome \ Clinical Phenotype

Thank you!