Nontuberculous Mycobacterial Lung Disease – Challenges in Diagnosis and Treatment Daniel A. Solomon, MD Physician, Division of Infectious Diseases Brigham and Women's Hospital Assistant Professor of Medicine Harvard Medical School ## Disclosures #### None ### Acknowledgements Paul Sax, MD Ruvandhi Nathavitharana, MD Rocio Hurtado, MD # Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline Charles L. Daley,^{1,2,8} Jonathan M. Iaccarino,³ Christoph Lange,^{4,5,6,7,8} Emmanuelle Cambau,^{4,3} Richard J. Wallace, Jr,^{9,8} Claire Andrejak,^{10,11} Erik C. Böttger,¹² Jan Brozek,¹³ David E. Griffith,¹⁴ Lorenzo Guglielmetti,^{8,15} Gwen A. Huitt,^{1,2} Shandra L. Knight,¹⁶ Philip Leitman,¹⁷ Theodore K. Marras,¹⁸ Kenneth N. Olivier,¹⁹ Miguel Santin,²⁰ Jason E. Stout,²¹ Enrico Tortoli,²² Jakko van Ingen,²³ Dirk Wagner,²⁴ and Kevin L. Winthrop²⁵ Diagnosis of NTM pulmonary disease associated with reduced survival ## NTM lung disease — Why so difficult? - Nomenclature confusing - Disease spectrum broad - Host susceptibility irreversible - Environmental reservoir - Diagnosis challenging - Treatments complex, poorly tolerated, long - Few controlled clinical trials "It's time to face reality, my friends... We're not exactly rocket scientists." ## Goals of this presentation - Review NTM terminology - How to make the diagnosis? - Treatment: Who? When? - How to select an initial regimen? - How to counsel patients? ### Case - 61-year-old woman presents with persistent cough - PMHx: Frequent episodes of "bronchitis", requires antibiotics - SHx: Smoked briefly in her 20s; avid gardener - PE notable for O2 sat 98%, weight 104 lbs, BMI 18.4 - CT chest demonstrates bronchiectasis and tree-in-bud nodularity at the bases R > L - Expectorated sputum AFB smear negative; mycobacterial culture grows *M intracellulare* #### Does this patient have NTM infection? - 1. Yes - 2. No - 3. Maybe ## NTMs: Defined by what they are not! - Tuberculous mycobacteria: - Mycobacterium tuberculosis - Mycobacterium leprae - NTMs *all* the rest, approximately 200 species! - Most common causes of pulmonary disease - M avium complex* (~80%) - M kansasii (~5-10%) - M abscessus (~5-10%) - M xenopi, M fortuitum, M malmoense, others #### Organism ## Slow vs. "Rapid" growers - Slow growers - *M avium* complex - M avium - M intracellulare - M chimaera - M kansasii - M xenopi - M malmoense - Rapid growers* - M abscessus group - M abscessus - M bolleti - M massilience - M fortuitum - M chelonei *Grows in culture by 7 days #### Respiratory infection ## Clinical relevance of non-tuberculous mycobacteria isolated in the Nijmegen-Arnhem region, The Netherlands FREE J van Ingen^{1, 2}, S A Bendien¹, W C M de Lange¹, W Hoefsloot¹, P N R Dekhuijzen¹, M J Boeree¹, D van Soolingen² Organism ## Outcomes differ by species | NTM | Expected Cure | |-------------------|---| | M kansasii | 95% | | M avium complex | 56%-85%, depends on extent of disease and macrolide susceptibility; 30% relapse | | M abscessus group | 25% if macrolide resistant, up to 80% if sensitive | ## Mycobacterium avium complex (MAC) Organism FIG 5 Phylogenetic tree, based on the 16S rRNA gene, for the species belonging to the M. avium complex. Organism ## MAC: species matters - Pathogenicity: M. intracellulare > M. avium > M. chimaera - M. intracellulare presents with more advanced disease - M. chimaera and M. avium may have a higher rate of clinical recurrence - Overall MAC cure rates ~60-80% # Prevalence of pulmonary NTM differs by geographic location and proximity to water ## How do patients acquire pulmonary NTM? - Inhalation the dominant route - Water aerosols the most likely source - Showers - Water taps - Hot tubs, spas, pools - Humidifiers - HVAC systems - Dust, potting soil - Aspiration, reflux ## Risk Factors for NTM infections #### **Pulmonary NTM infection** #### Structural / functional lung compromise #### Genetic - Cystic fibrosis - α-1-antitrypsin deficiency - Primary Ciliary dyskinesia - Pulmonary alveolar proteinosis #### Acquired - Bronchiectasis - COPD - Chronic aspiration - Lung malignancy - Lady Windemere syndrome - Post menopausal females with slender body habitus and skeletal abnormalities #### Drug induced - Anti-TNFα therapy** - Cytotoxic therapy** - Steroid therapy** #### Other - Vitamin D deficiency - Aspergillus infection (ABPA) • COPD: 2-10X Bronchiectasis: 44-188X ### Nodular bronchiectasis - Thin, post-menopausal women - Often non-smokers or ex-smokers - Scoliosis, pectus excavatum - Slowly progressive - "Lady Windermere" # Clinical and microbiologic criteria for diagnosis of NTM disease Clinical Pulmonary and/or systemic symptoms ## Pulmonary NTMs: Clinical syndrome - Highly variable and frequently non-specific - Pulmonary symptoms - Chronic cough "can't bring it up" - Episodes of excess sputum production, especially following URIs - Dyspnea tends to occur only in advanced disease or with underlying COPD - Extrapulmonary symptoms - Fatigue - Low-grade fever, night sweats - Weight loss ominous! 22 # Clinical and microbiologic criteria for diagnosis of NTM disease - 1. Clinical Pulmonary and/or systemic symptoms - 2. Radiologic Nodular or cavitary opacities on CXR or CT Bronchiectasis with small nodules #### Two main forms of pulmonary NTM disease - Nodular bronchiectatis thin women - Fibrocavitary COPD is biggest risk, often high organism burden - Overlap is common, especially in severe and progressive bronchiectasis # Clinical and microbiologic criteria for diagnosis of NTM disease 2. Radiologic Nodular or cavitary opacities on CXR or CT Bronchiectasis with small nodules ## Clinical and microbiologic criteria for diagnosis of NTM disease Clinical - Pulmonary and/or systemic symptoms - Radiologic Nodular or cavitary opacities on CXR or CT Bronchiectasis with small nodules - 3. Microbiologic - 1. Positive cultures from at least 2 expectorated samples Or 2. Positive culture from at least 1 BAL Or 3. Transbronchial or lung biopsy with granuloma and positive culture for NTM ### Case - 61-year-old woman presents with persistent cough - PMHx: Frequent episodes of "bronchitis", requires antibiotics - SHx: Smoked briefly in her 20s; avid gardener - PE notable for O2 sat 98%, weight 104 lbs, BMI 18.4 - CT chest demonstrates bronchiectasis and tree-inbud nodularity at the bases R > L - Expectorated sputum AFB smear negative; mycobacterial culture grows *M intracellulare* Does this patient have NTM infection? Maybe ### Case continued - Undergoes induced sputum exams on 3 separate days - All are smear-negative for mycobacteria - 2/3 are culture positive for *M. intracellulare* ## Does our case have pulmonary NTM? #### Yes! - Host: Thin postmenopausal woman - Symptoms: Cough, poor exercise tolerance - Imaging: Inflammatory nodules, bronchiectasis - Micro: 2/3 sputum samples positive for MAC ## What would you do next? - A. Start 3 drug therapy x12-18 months - B. Await drug susceptibilities then start treatment - C. Active surveillance - D. Depends Diagnosis of pulmonary NTM rarely requires immediate therapy! A period of observation to collect more data, elicit patient preferences, and monitor clinical course is usually warranted. ### To treat or not to treat? | Guiding data | Favors Treatment | |-----------------------|------------------| | Clinical symptoms | | | Radiographic findings | | | Burden of infection | | | Co-morbidities | | | Species isolated | | Consider: drug toxicities, DDIs, duration of treatment ## To treat or not to treat? | Guiding data | Favors Treatment | |-----------------------|--| | Clinical symptoms | Intolerable, progressive respiratory symptoms Weight loss Progressive sx over time | | Radiographic findings | Fibrocavitary diseaseLung destruction | | Burden of infection | Smear Positive | | Co-morbidities | Immunosuppression, TNF-alpha inhibitors | | Species isolated | M. kansasii (high rate of cure) M. abscessus (high morbidity) | Consider: drug toxicities, DDIs, duration of treatment ## Observation (Active surveillance) - Mild or intermittent symptoms, nodular bronchiectasis pattern - Re-evaluate in 6-12 months clinically and with CT scan - Expect waxing and waning abnormalities - Aggressively treat bronchiectasis flares with abx NOT used for NTMs: - Amoxicillin-clavulanate - TMP/SMX - Doxycycline ## How the micro lab can help - Reference laboratories with extensive experience: - M avium complex: National Jewish Health, Denver - Rapid-growers such as *M abscessus*: University of Texas Health Science Center - Key determinant of treatment responsiveness is susceptibility to macrolides (azithromycin or clarithromycin) - Amikacin and rifampin also useful in certain circumstances - Remainder of drug susceptibility testing has not been correlated with treatment outcomes! ## Treatment of macrolide-susceptible NTM lung disease due to MAC #### Mild nodular bronchiectasis - Azithromcyin, rifampin, ethambutol - Can give daily or 3x / week ## Severe nodular bronchiectasis or fibrocavitary disease - Azithromycin, rifampin, ethambutol DAILY - Consider addition of amikacin 3x/week for at least 1 month Duration of therapy – one year after culture conversion ## Azithromycin > Clarithromycin - Daily vs BID dosing - Better tissue penetration - Fewer side effects - Fewer drug interactions - Less metabolism by rifamycins #### Generalized timeline for evaluation and management of pulmonary MAC - Baseline chest CT - Bronchiectasis eval - Ocular exam - MAC susceptibilities - Labs: consider CRP - Antibiotic regimen - Drug tolerance eval - Antibiotic safety labs - Discuss potential worsening - Serum drug levels if appropriate - Drug tolerance eval - Eval symptom changes - Consider sputum AFB culture - Repeat labs/imaging if signs/symptoms - Repeat chest CT - Drug tolerance eval - Eval symptom changes - Evaluate for sputum culture conversion - If culture +: consider drug levels, secondary infection - End of therapy chest CT - Drug tolerance eval - Symptom burden - Discuss of risk relapse and chronic suppression - Clinical monitoring after therapy every 3-12 months ### Important and/or common toxicities | Macrolides* | Rifamycins | Ethambutol | Aminoglycosides | |---------------------------------------|--------------------------------------|------------------------------------|------------------------------------| | | | | | | • GI | Orange urine, | Optic neuritis | Ototoxicity | | • Taste | tears | Peripheral | Nephrotoxicity | | disturbance | Hepatitis | neuropathy | Bronchospasm, | | QT prolongation | Hypersensitivity | | dysphonia (if | | • Drug | syndromes | | inhaled) | | interactions | Leukopenia | | | | Tinnitus, hearing | • Drug | | | | loss | interactions | | | ^{*}all tend to be worse with clarithromycin than azithromycin #### Patient education: medication side effects #### https://www.youtube.com/watch?v=3sVHodFi8gY #### Do not use macrolide monotherapy! - Rationale - Macrolide monotherapy or macrolide plus quinolone: 20% resistance - Macrolide plus ethambutol and rifampin: 4% resistance - Strong correlation between macrolide resistance, persistently positive cultures, treatment failure, and mortality - Recall: treat bronchiectasis flares with antibiotics NOT used for NTMs #### Case Presentation - 83-year-old woman referred for consideration of NTM treatment - Lengthy history of recurrent pulmonary infections dating to childhood, including a prolonged hospitalization for pneumonia at age 18, and another at age 60; always thin and "fragile" - Depression (on citalopram); sensitive stomach - Moderate-severe bronchiectasis on imaging; multiple consolidative nodules - Over past year, weight down from 110 to 105 lbs - 2/2 sputum samples positive for *M abscessus* subspecies *abscessus* SUSCEPTIBILITY PATTERN OF: Mycobacterium abscessus complex | | S = SUSCEPTIBLE | R = RES | ISTANT I=I | I = INTERMEDIATE | | |-----------------------------|--------------------------------|----------|------------|------------------|--| | ANTIBIOTICS | Microdilution MIC (µg
/ mL) | s | ı | R | | | TMP-SMX | 4/76 | | | V | | | Linezolid | 8 | √ | | | | | Ciprofloxacin | 4 | | | ✓ | | | lmipenem | 32 | | | ✓ | | | Moxifloxacin ¹ | 4 | | | ✓ | | | Cefoxitin | 32 | | ✓ | | | | Amikacin | 8 | ✓ | | | | | Doxycycline | >16 | | | ✓ | | | Minocycline | >8 | | | V | | | Tigecycline ² | 0.12 | | | | | | Tobramyein | _ | | | , | | | Clarithromycin ³ | 16 | | | V | | | Ertapenem⁴ | - | | | | | | Meropenem ¹ | | | | | | | Clofazimine ² | - | | | | | **COMMENTS:** Clarithromycin resistance due to inducible erm gene ## Weight graph over time #### Case Presentation - Patient informed that treatment was unlikely to be curative, and associated with many side effects – she elects to be monitored - 6 months later, she reconsiders - Admitted to hospital and started on imipenem, amikacin, linezolid, and azithromycin; citalopram d/c'd - Course notable for SSRI withdrawal (linezolid → tedizolid), amikacin-induced increased creatinine, oral thrush, and further weight loss - Oral therapy of tedizolid, azithromycin, and clofazimine continued for 4 months after initial 1 month IV course – ultimately stopped due to side effects - Gradual decline in exercise capacity, functional status, weight continue ### M abscessus spp pulmonary infection - Organism has extensive drug resistance - Subspecies M abscessus and M bolletii intrinsically resistant to macrolides due to inducible erm41 gene; not present in M massiliense - Medical treatment complex and rarely curative - Typical regimen starts with two parenteral agents for 8 weeks, e.g., imipenem or cefoxitin plus amikacin, with additional oral agents (linezolid, azithromycin, clofazimine) – oral regimen alone continued thereafter - Consultation with thoracic surgery for localized disease – best chance at cure ## Treatment and Outcomes differ by species | NTM | Drugs | Duration | Expected Cure | |-------------------|---|----------------------|---| | M kansasii | INH or <u>macrolide</u> Ethambutol Rifampin | >12 months | 95% | | M avium complex | Macrolide
Ethambutol
Rifampin | >12 months | 56%-85%, depends on extent of disease and macrolide susceptibility; 30% relapse | | M abscessus group | Macrolide Imipenem Amikacin Other oral agents (?) | As long as tolerated | 25% if macrolide resistant, up to 80% if sensitive | ## Additional Therapies for NTM Pulmonary Disease - Inhaled liposomal amikacin (if S- amikacin) - Bedaquiline - Linezolid and tedizolid - Clofazimine - Meropenem-vaborbactam - Omadacycline Olivier KN, et al. Am J Respir Crit Care Med. 2017;195:814-823. Yagi K, et al BMC Infect Dis 2017 Aug 9;17(1):558. Vesenbeckh S, et al. European Respiratory Journal 2017; Winthrop KL, et al Eur Respir J. 2015;45:1177-1179. Martiniano SL et al. Chest 2017;152:800-809; Philley JV, et al. Chest. 2015;148:499-506. Pearson J, et al. Open Forum Infect Dis 2020. #### Bacteriophages on the horizon Open Forum Infectious Diseases BRIEF REPORT Nebulized Bacteriophage in a Patient With Refractory *Mycobacterium abscessus* Lung Disease Rebekah M. Dedrick, ^{1,a} Krista G. Freeman, ^{1,a} Jan A. Nguyen, ^{2,a} Asli Bahadirli-Talbott, ² Mitchell E. Ca<u>rdin. ² Madison Cristinziano. ¹ Bailey E. Smith. ¹ Soowan Jeong. ² Elisa H. Ignatius. ^{3,4} Ch</u> Volume 185, Issue 11, 26 May 2022, Pages 1860-1874.e12 JOURNAL ARTICLE ACCEPTED MANUSCRIPT Phage Therapy of Mycobacterium Infections: Compassionate-use of Phages in Twenty Patients with Drug-Resistant Mycobacterial Disease 3 Rebekah M. Dedrick, Bailey E. Smith, Madison Cristinziano, Krista G. Freeman, Deborah Jacobs-Sera, Yvonne Belessis, A. Whitney Brown, Keira A. Cohen, Rebecca M. Davidson, David van Duin ... Show more Author Notes Clinical Infectious Diseases, ciac453, https://doi.org/10.1093/cid/ciac453 Published: 09 June 2022 Article history ▼ Article Host and pathogen response to bacteriophage engineered against *Mycobacterium abscessus* lung infection Jerry A. Nick ^{1, 2, 9} R M, Rebekah M. Dedrick ³, Alice L. Gray ², Eszter K. Vladar ², Bailey E. Smith ³, Krista G. Freeman ³, Kenneth C. Malcolm ¹, L. Elaine Epperson ⁴, Nabeeh A. Hasan ⁴, Jo Hendrix ^{4, 5}, Kimberly Callahan ⁴, Kendra Walton ⁴, Brian Vestal ⁴, Emily Wheeler ¹, Noel M. Rysavy ¹, Katie Poch ¹, Silvia Caceres ¹, Valerie K. Lovell ¹ ... Rebecca M. Davidson ⁴ ## Patient education is vital! Reassure but temper expectations carefully - Reassure that they are not contagious to others - Stopping even one drug could risk treatment failure, resistance - Drug toxicities are common, but can be managed with staggered start, dose-adjustments, other strategies - Clinical improvement may take several weeks - Monitoring is critical weight, blood tests (CBC, metabolic panel), sputum assessments (every 1-2 months until negative), eye exams (every 3-6 months while on ethambutol) - F/u imaging should be deferred until end of treatment or for clinical relapse – do not expect all abnormalities to resolve - Treatment is not a lifetime cure reinfection may occur # Patient counseling about prevention of exposure and disease progression - Use showerhead with large diameter stream - Maintain water in hot water heater > 130F - Avoid hot tubs, spas, especially indoors - Use distilled water in humidifiers and CPAP machines - Get evaluated and treated for GERD - Head of bed elevated while sleeping - Mask while gardening - Airway clearance strategies here's where you can help us! https://impact-be.com/ ## NTMInfo.org: Useful resource for patients and their families # NTM Pulmonary Disease – Much Still to Learn, With Many Unanswered Questions! - Who are the best candidates for treatment? - Would treatment of mild disease prevent later complications, or just expose patient to drug toxicity and select for resistance? - What is the optimal frequency of imaging? - What is the best way to prevent disease? - What are the most effective and safest regimens? - Does NTM cause low BMI, or is a low BMI somehow predisposing to NTM? - Who should undergo genetic testing? - Who should be referred for surgery? - How can Pulmonary and ID best collaborate on these challenging cases? #### Pulmonary NTM disease – Take-home points - Suspect pulmonary NTM in any patient with chronic, recurrent symptoms unresponsive to short courses of antibiotics - Be especially suspicious in susceptible hosts (bronchiectasis, women with low BMI, COPD, CF) - Watch out for TNF-blockers - Confirm diagnosis by incorporating clinical and microbiologic data no rush to treat - Prolonged combination therapy avoid macrolide monotherapy - Team approach with your ID friends and colleagues