
## Nontuberculous Mycobacterial Lung Disease – Challenges in Diagnosis and Treatment

Daniel A. Solomon, MD
Physician, Division of Infectious Diseases
Brigham and Women's Hospital
Assistant Professor of Medicine
Harvard Medical School





## Disclosures

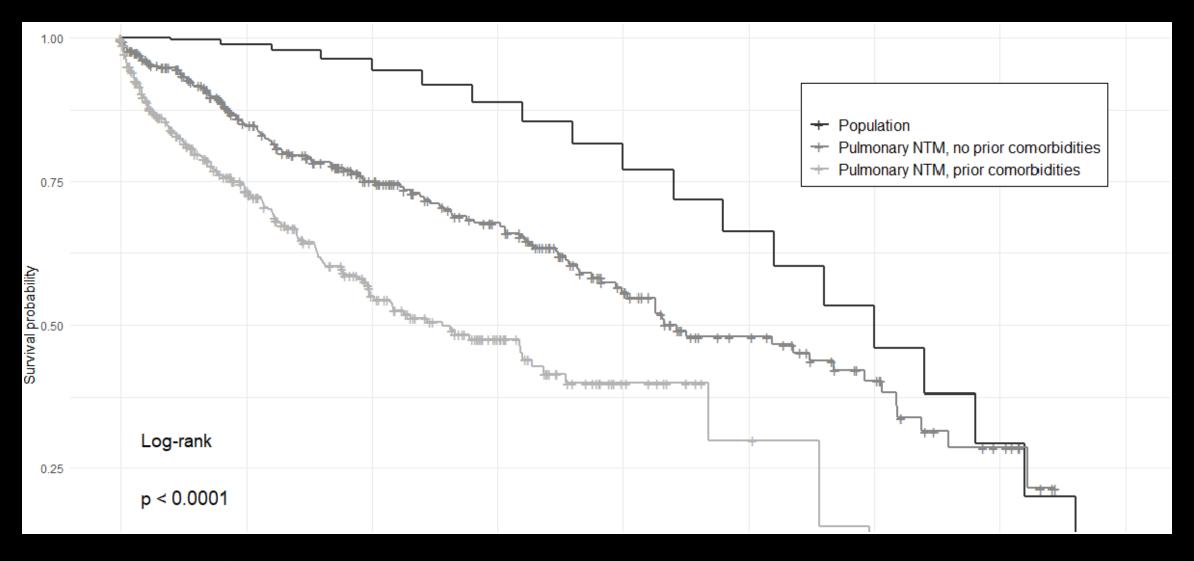
#### None

### Acknowledgements



Paul Sax, MD



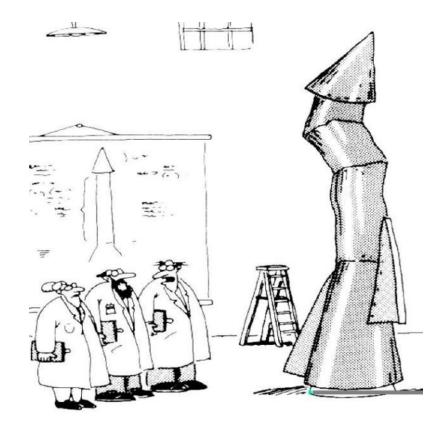

Ruvandhi Nathavitharana, MD



Rocio Hurtado, MD

# Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline

Charles L. Daley,<sup>1,2,8</sup> Jonathan M. Iaccarino,<sup>3</sup> Christoph Lange,<sup>4,5,6,7,8</sup> Emmanuelle Cambau,<sup>4,3</sup> Richard J. Wallace, Jr,<sup>9,8</sup> Claire Andrejak,<sup>10,11</sup> Erik C. Böttger,<sup>12</sup> Jan Brozek,<sup>13</sup> David E. Griffith,<sup>14</sup> Lorenzo Guglielmetti,<sup>8,15</sup> Gwen A. Huitt,<sup>1,2</sup> Shandra L. Knight,<sup>16</sup> Philip Leitman,<sup>17</sup> Theodore K. Marras,<sup>18</sup> Kenneth N. Olivier,<sup>19</sup> Miguel Santin,<sup>20</sup> Jason E. Stout,<sup>21</sup> Enrico Tortoli,<sup>22</sup> Jakko van Ingen,<sup>23</sup> Dirk Wagner,<sup>24</sup> and Kevin L. Winthrop<sup>25</sup>




Diagnosis of NTM pulmonary disease associated with reduced survival



## NTM lung disease — Why so difficult?

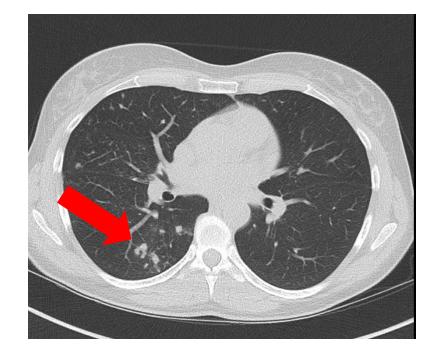
- Nomenclature confusing
- Disease spectrum broad
- Host susceptibility irreversible
- Environmental reservoir
- Diagnosis challenging
- Treatments complex, poorly tolerated, long
- Few controlled clinical trials

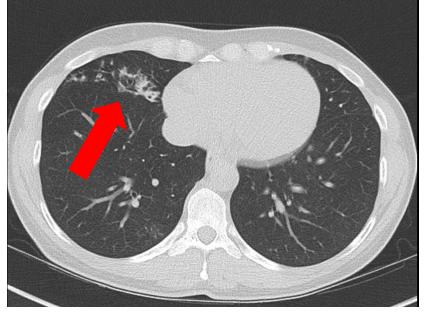


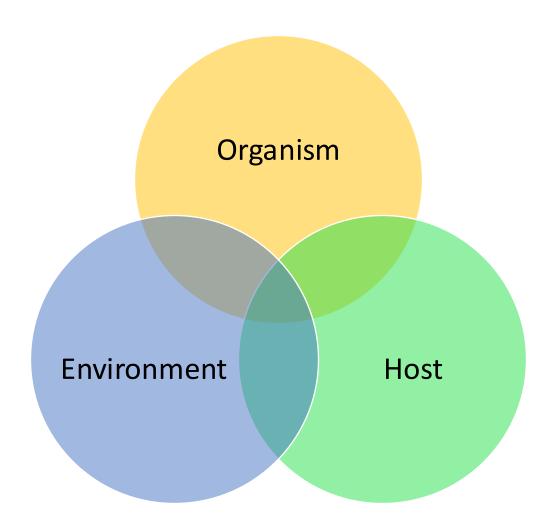
"It's time to face reality, my friends... We're not exactly rocket scientists."

## Goals of this presentation

- Review NTM terminology
- How to make the diagnosis?
- Treatment: Who? When?
- How to select an initial regimen?
- How to counsel patients?





### Case


- 61-year-old woman presents with persistent cough
- PMHx: Frequent episodes of "bronchitis", requires antibiotics
- SHx: Smoked briefly in her 20s; avid gardener
- PE notable for O2 sat 98%, weight 104 lbs, BMI 18.4
- CT chest demonstrates bronchiectasis and tree-in-bud nodularity at the bases R > L
- Expectorated sputum AFB smear negative; mycobacterial culture grows *M intracellulare*

#### Does this patient have NTM infection?

- 1. Yes
- 2. No
- 3. Maybe









## NTMs: Defined by what they are not!

- Tuberculous mycobacteria:
  - Mycobacterium tuberculosis
  - Mycobacterium leprae

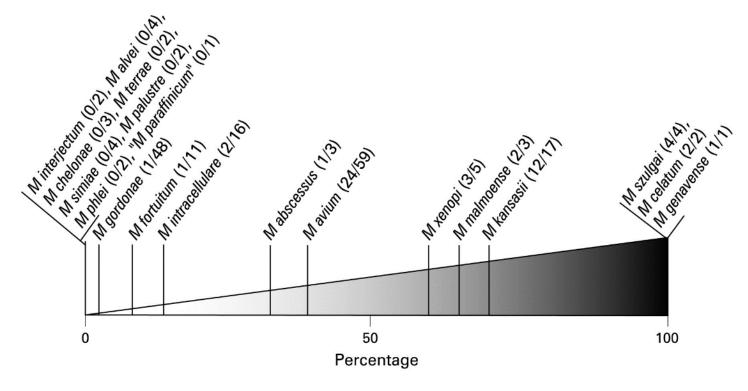
- NTMs *all* the rest, approximately 200 species!
- Most common causes of pulmonary disease
  - M avium complex\* (~80%)
  - M kansasii (~5-10%)
  - M abscessus (~5-10%)
  - M xenopi, M fortuitum, M malmoense, others

#### Organism

## Slow vs. "Rapid" growers

- Slow growers
  - *M avium* complex
    - M avium
    - M intracellulare
    - M chimaera
  - M kansasii
  - M xenopi
  - M malmoense

- Rapid growers\*
  - M abscessus group
    - M abscessus
    - M bolleti
    - M massilience
  - M fortuitum
  - M chelonei


\*Grows in culture by 7 days

#### Respiratory infection

## Clinical relevance of non-tuberculous mycobacteria isolated in the Nijmegen-Arnhem region, The Netherlands FREE

J van Ingen<sup>1, 2</sup>, S A Bendien<sup>1</sup>, W C M de Lange<sup>1</sup>, W Hoefsloot<sup>1</sup>, P N R Dekhuijzen<sup>1</sup>, M J Boeree<sup>1</sup>, D van Soolingen<sup>2</sup>





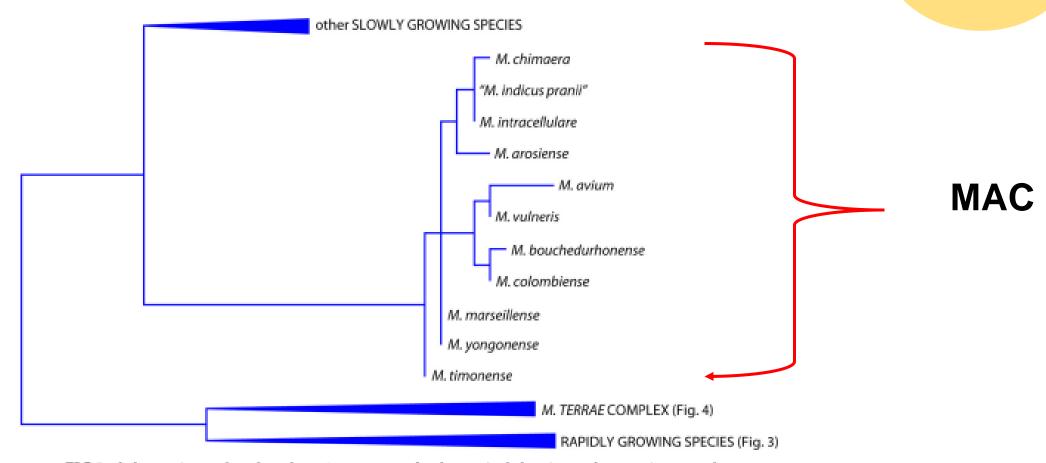
Organism

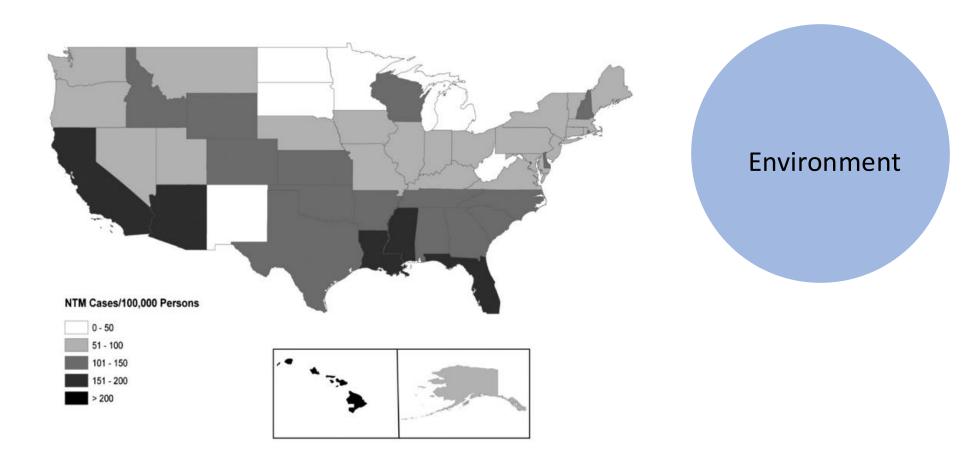
## Outcomes differ by species

| NTM               | Expected Cure                                                                   |
|-------------------|---------------------------------------------------------------------------------|
| M kansasii        | 95%                                                                             |
| M avium complex   | 56%-85%, depends on extent of disease and macrolide susceptibility; 30% relapse |
| M abscessus group | 25% if macrolide resistant, up to 80% if sensitive                              |

## Mycobacterium avium complex (MAC)

Organism



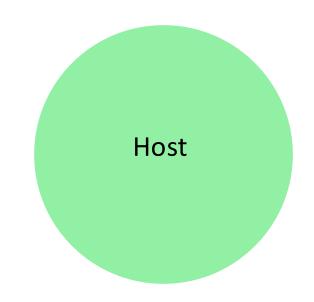


FIG 5 Phylogenetic tree, based on the 16S rRNA gene, for the species belonging to the M. avium complex.

Organism

## MAC: species matters

- Pathogenicity: M. intracellulare > M. avium > M. chimaera
- M. intracellulare presents with more advanced disease
- M. chimaera and M. avium may have a higher rate of clinical recurrence
- Overall MAC cure rates ~60-80%

# Prevalence of pulmonary NTM differs by geographic location and proximity to water




## How do patients acquire pulmonary NTM?

- Inhalation the dominant route
- Water aerosols the most likely source
  - Showers
  - Water taps
  - Hot tubs, spas, pools
  - Humidifiers
  - HVAC systems
- Dust, potting soil
- Aspiration, reflux



## Risk Factors for NTM infections



#### **Pulmonary NTM infection**

#### Structural / functional lung compromise

#### Genetic

- Cystic fibrosis
- α-1-antitrypsin deficiency
- Primary Ciliary dyskinesia
- Pulmonary alveolar proteinosis

#### Acquired

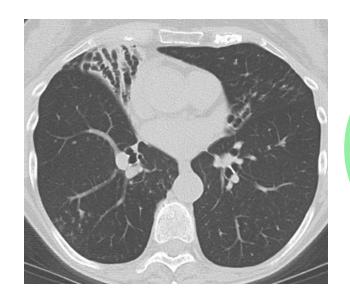
- Bronchiectasis
- COPD
- Chronic aspiration
- Lung malignancy

- Lady Windemere syndrome
- Post menopausal females with slender body habitus and skeletal abnormalities

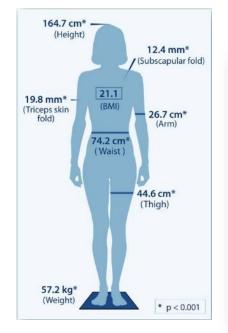
#### Drug induced

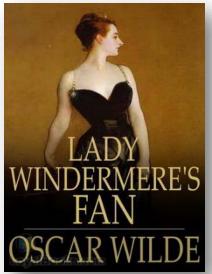
- Anti-TNFα therapy\*\*
- Cytotoxic therapy\*\*
- Steroid therapy\*\*

#### Other


- Vitamin D deficiency
- Aspergillus infection (ABPA)

• COPD: 2-10X


Bronchiectasis: 44-188X


### Nodular bronchiectasis

- Thin, post-menopausal women
- Often non-smokers or ex-smokers
- Scoliosis, pectus excavatum
- Slowly progressive
- "Lady Windermere"



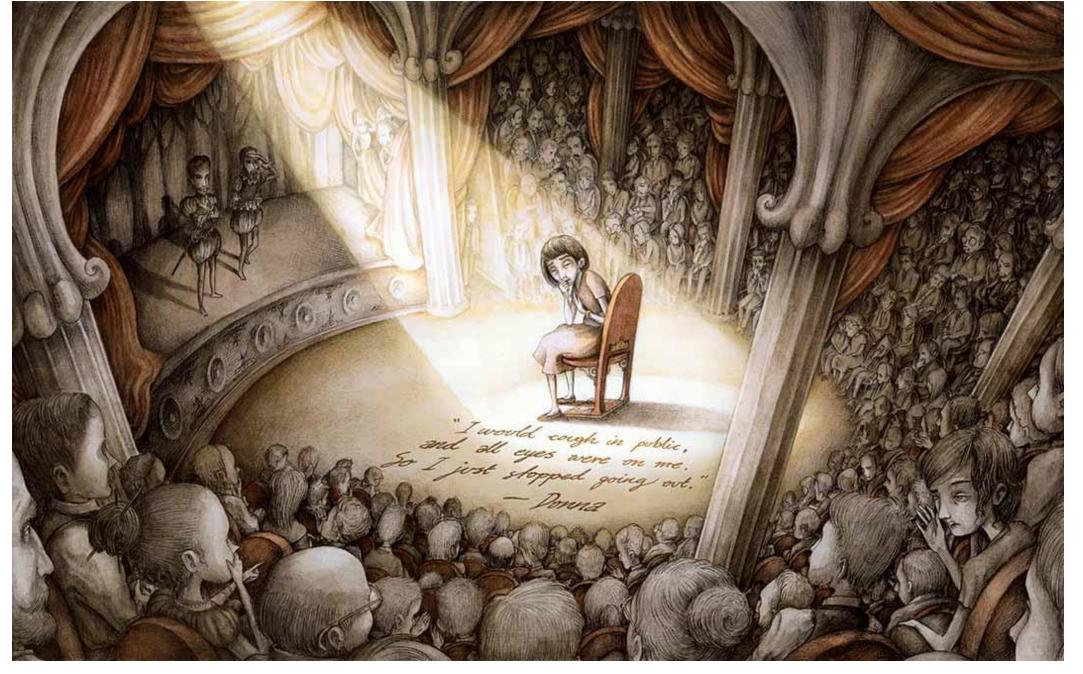






# Clinical and microbiologic criteria for diagnosis of NTM disease

Clinical


Pulmonary and/or systemic symptoms

## Pulmonary NTMs: Clinical syndrome

- Highly variable and frequently non-specific
- Pulmonary symptoms
  - Chronic cough "can't bring it up"
  - Episodes of excess sputum production, especially following URIs
  - Dyspnea tends to occur only in advanced disease or with underlying COPD
- Extrapulmonary symptoms
  - Fatigue
  - Low-grade fever, night sweats
  - Weight loss ominous!



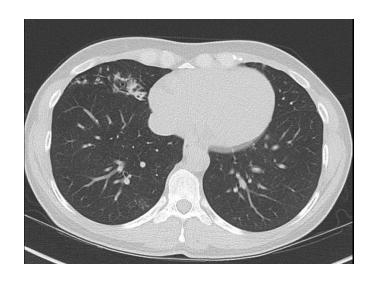
22



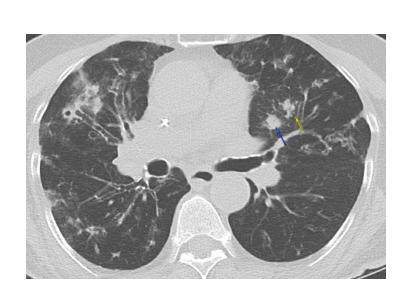
# Clinical and microbiologic criteria for diagnosis of NTM disease



- 1. Clinical Pulmonary and/or systemic symptoms
- 2. Radiologic Nodular or cavitary opacities on CXR or CT Bronchiectasis with small nodules


#### Two main forms of pulmonary NTM disease

- Nodular bronchiectatis thin women
- Fibrocavitary COPD is biggest risk, often high organism burden
- Overlap is common, especially in severe and progressive bronchiectasis


# Clinical and microbiologic criteria for diagnosis of NTM disease



2. Radiologic Nodular or cavitary opacities on CXR or CT Bronchiectasis with small nodules







## Clinical and microbiologic criteria for diagnosis of NTM disease



Clinical

- Pulmonary and/or systemic symptoms
- Radiologic

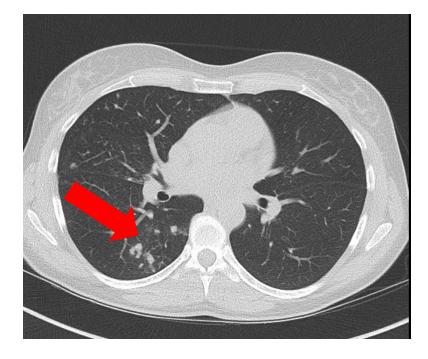
Nodular or cavitary opacities on CXR or CT Bronchiectasis with small nodules

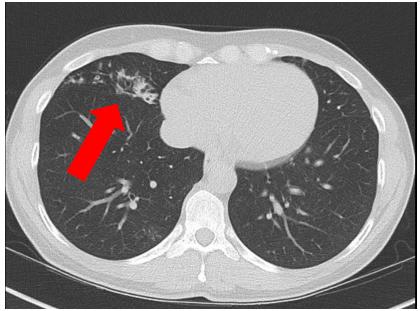
- 3. Microbiologic
- 1. Positive cultures from at least 2 expectorated samples

Or

2. Positive culture from at least 1 BAL

Or


3. Transbronchial or lung biopsy with granuloma and positive culture for NTM


### Case

- 61-year-old woman presents with persistent cough
- PMHx: Frequent episodes of "bronchitis", requires antibiotics
- SHx: Smoked briefly in her 20s; avid gardener
- PE notable for O2 sat 98%, weight 104 lbs, BMI 18.4
- CT chest demonstrates bronchiectasis and tree-inbud nodularity at the bases R > L
- Expectorated sputum AFB smear negative; mycobacterial culture grows *M intracellulare*

Does this patient have NTM infection?

Maybe





### Case continued

- Undergoes induced sputum exams on 3 separate days
- All are smear-negative for mycobacteria
- 2/3 are culture positive for *M. intracellulare*

## Does our case have pulmonary NTM?

#### Yes!

- Host: Thin postmenopausal woman
- Symptoms: Cough, poor exercise tolerance
- Imaging: Inflammatory nodules, bronchiectasis
- Micro: 2/3 sputum samples positive for MAC

## What would you do next?



- A. Start 3 drug therapy x12-18 months
- B. Await drug susceptibilities then start treatment
- C. Active surveillance
- D. Depends

Diagnosis of pulmonary NTM rarely requires immediate therapy! A period of observation to collect more data, elicit patient preferences, and monitor clinical course is usually warranted.

### To treat or not to treat?

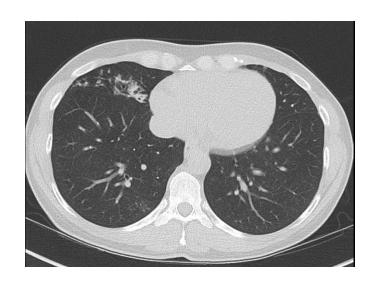
| Guiding data          | Favors Treatment |
|-----------------------|------------------|
| Clinical symptoms     |                  |
| Radiographic findings |                  |
| Burden of infection   |                  |
| Co-morbidities        |                  |
| Species isolated      |                  |

Consider: drug toxicities, DDIs, duration of treatment

## To treat or not to treat?

| Guiding data          | Favors Treatment                                                                                                         |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------|
| Clinical symptoms     | <ul> <li>Intolerable, progressive respiratory symptoms</li> <li>Weight loss</li> <li>Progressive sx over time</li> </ul> |
| Radiographic findings | <ul><li>Fibrocavitary disease</li><li>Lung destruction</li></ul>                                                         |
| Burden of infection   | Smear Positive                                                                                                           |
| Co-morbidities        | <ul> <li>Immunosuppression, TNF-alpha inhibitors</li> </ul>                                                              |
| Species isolated      | <ul> <li>M. kansasii (high rate of cure)</li> <li>M. abscessus (high morbidity)</li> </ul>                               |

Consider: drug toxicities, DDIs, duration of treatment


## Observation (Active surveillance)

- Mild or intermittent symptoms, nodular bronchiectasis pattern
- Re-evaluate in 6-12 months clinically and with CT scan
  - Expect waxing and waning abnormalities
- Aggressively treat bronchiectasis flares with abx NOT used for NTMs:
  - Amoxicillin-clavulanate
  - TMP/SMX
  - Doxycycline

## How the micro lab can help

- Reference laboratories with extensive experience:
  - M avium complex: National Jewish Health, Denver
  - Rapid-growers such as *M abscessus*: University of Texas Health Science Center
- Key determinant of treatment responsiveness is susceptibility to macrolides (azithromycin or clarithromycin)
  - Amikacin and rifampin also useful in certain circumstances
- Remainder of drug susceptibility testing has not been correlated with treatment outcomes!

## Treatment of macrolide-susceptible NTM lung disease due to MAC



#### Mild nodular bronchiectasis

- Azithromcyin, rifampin, ethambutol
- Can give daily or 3x / week



## Severe nodular bronchiectasis or fibrocavitary disease

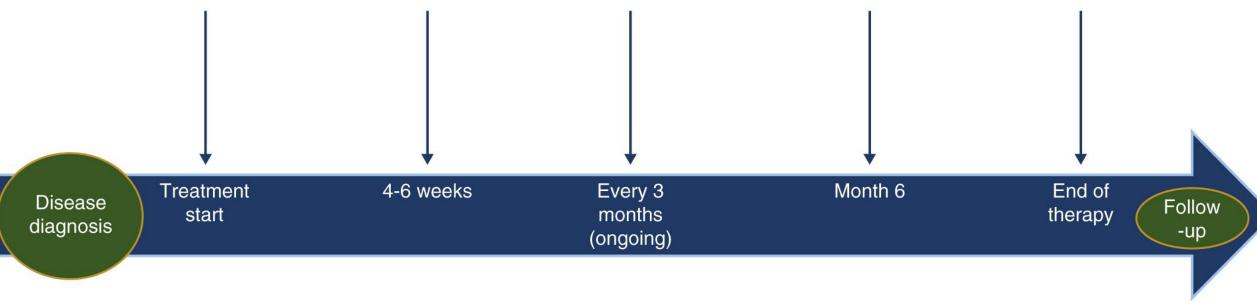
- Azithromycin, rifampin, ethambutol DAILY
- Consider addition of amikacin 3x/week for at least 1 month

Duration of therapy – one year after culture conversion

## Azithromycin > Clarithromycin

- Daily vs BID dosing
- Better tissue penetration
- Fewer side effects
- Fewer drug interactions
- Less metabolism by rifamycins

#### Generalized timeline for evaluation and management of pulmonary MAC


- Baseline chest CT
- Bronchiectasis eval
- Ocular exam
- MAC susceptibilities
- Labs: consider CRP
- Antibiotic regimen

- Drug tolerance eval
- Antibiotic safety labs
- Discuss potential worsening
- Serum drug levels if appropriate

- Drug tolerance eval
- Eval symptom changes
- Consider sputum AFB culture
- Repeat labs/imaging if signs/symptoms

- Repeat chest CT
- Drug tolerance eval
- Eval symptom changes
- Evaluate for sputum culture conversion
- If culture +: consider drug levels, secondary infection

- End of therapy chest CT
- Drug tolerance eval
- Symptom burden
- Discuss of risk relapse and chronic suppression
- Clinical monitoring after therapy every 3-12 months



### Important and/or common toxicities

| Macrolides*                           | Rifamycins                           | Ethambutol                         | Aminoglycosides                    |
|---------------------------------------|--------------------------------------|------------------------------------|------------------------------------|
|                                       |                                      |                                    |                                    |
| • GI                                  | <ul> <li>Orange urine,</li> </ul>    | <ul> <li>Optic neuritis</li> </ul> | <ul> <li>Ototoxicity</li> </ul>    |
| • Taste                               | tears                                | <ul> <li>Peripheral</li> </ul>     | <ul> <li>Nephrotoxicity</li> </ul> |
| disturbance                           | <ul> <li>Hepatitis</li> </ul>        | neuropathy                         | <ul> <li>Bronchospasm,</li> </ul>  |
| <ul> <li>QT prolongation</li> </ul>   | <ul> <li>Hypersensitivity</li> </ul> |                                    | dysphonia (if                      |
| • Drug                                | syndromes                            |                                    | inhaled)                           |
| interactions                          | <ul> <li>Leukopenia</li> </ul>       |                                    |                                    |
| <ul> <li>Tinnitus, hearing</li> </ul> | • Drug                               |                                    |                                    |
| loss                                  | interactions                         |                                    |                                    |

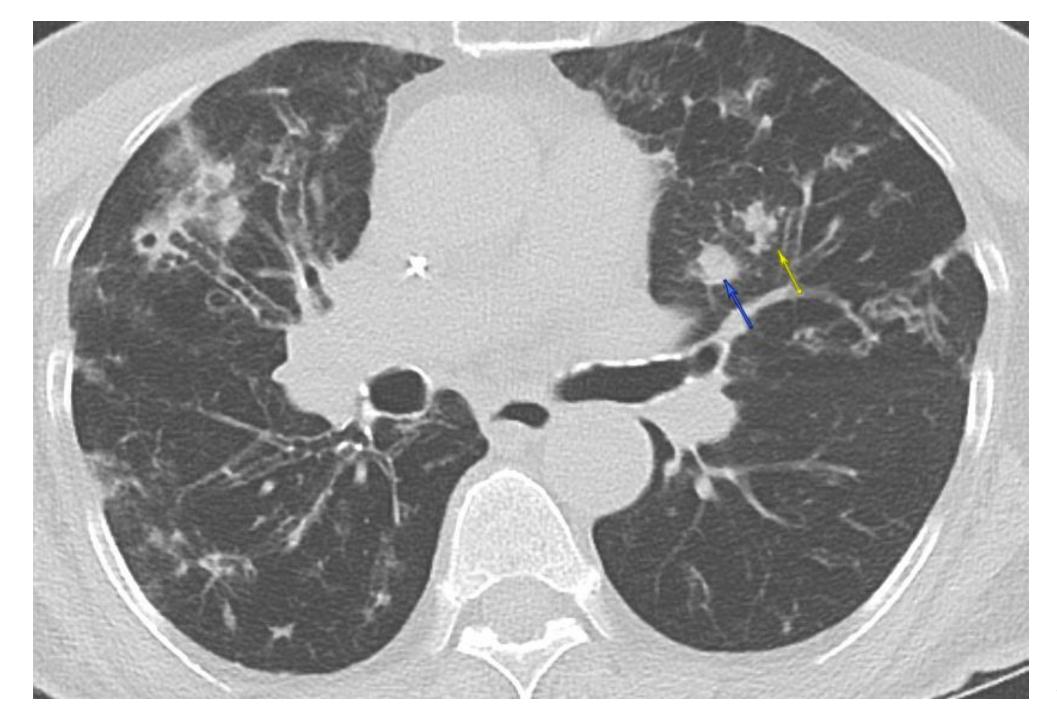
<sup>\*</sup>all tend to be worse with clarithromycin than azithromycin

#### Patient education: medication side effects

#### https://www.youtube.com/watch?v=3sVHodFi8gY



#### Do not use macrolide monotherapy!


- Rationale
  - Macrolide monotherapy or macrolide plus quinolone: 20% resistance
  - Macrolide plus ethambutol and rifampin: 4% resistance
- Strong correlation between macrolide resistance, persistently positive cultures, treatment failure, and mortality
- Recall: treat bronchiectasis flares with antibiotics NOT used for NTMs

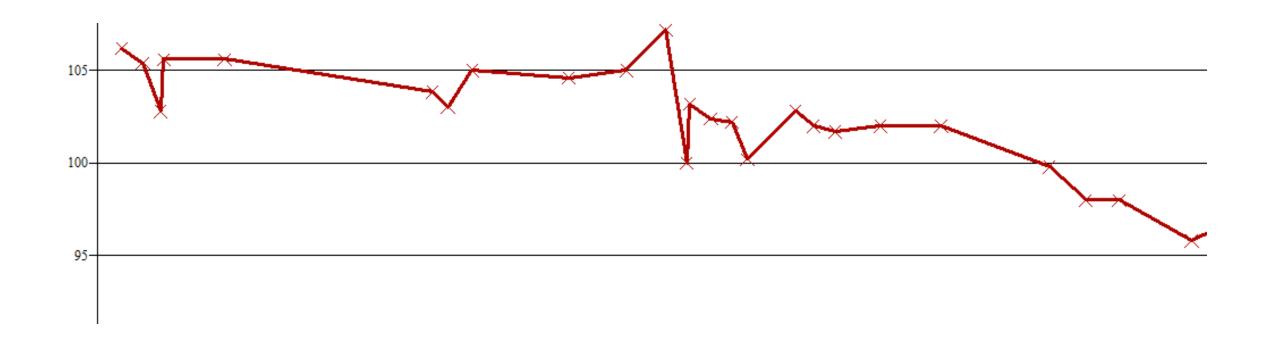


#### Case Presentation



- 83-year-old woman referred for consideration of NTM treatment
- Lengthy history of recurrent pulmonary infections dating to childhood, including a prolonged hospitalization for pneumonia at age 18, and another at age 60; always thin and "fragile"
- Depression (on citalopram); sensitive stomach
- Moderate-severe bronchiectasis on imaging; multiple consolidative nodules
- Over past year, weight down from 110 to 105 lbs
- 2/2 sputum samples positive for *M abscessus* subspecies *abscessus*




SUSCEPTIBILITY PATTERN OF: Mycobacterium abscessus complex

|                             | S = SUSCEPTIBLE                | R = RES  | ISTANT I=I | I = INTERMEDIATE |  |
|-----------------------------|--------------------------------|----------|------------|------------------|--|
| ANTIBIOTICS                 | Microdilution MIC (µg<br>/ mL) | s        | ı          | R                |  |
| TMP-SMX                     | 4/76                           |          |            | <b>V</b>         |  |
| Linezolid                   | 8                              | <b>√</b> |            |                  |  |
| Ciprofloxacin               | 4                              |          |            | <b>✓</b>         |  |
| lmipenem                    | 32                             |          |            | <b>✓</b>         |  |
| Moxifloxacin <sup>1</sup>   | 4                              |          |            | <b>✓</b>         |  |
| Cefoxitin                   | 32                             |          | <b>✓</b>   |                  |  |
| Amikacin                    | 8                              | ✓        |            |                  |  |
| Doxycycline                 | >16                            |          |            | <b>✓</b>         |  |
| Minocycline                 | >8                             |          |            | V                |  |
| Tigecycline <sup>2</sup>    | 0.12                           |          |            |                  |  |
| Tobramyein                  | _                              |          |            | ,                |  |
| Clarithromycin <sup>3</sup> | 16                             |          |            | V                |  |
| Ertapenem⁴                  | -                              |          |            |                  |  |
| Meropenem <sup>1</sup>      |                                |          |            |                  |  |
| Clofazimine <sup>2</sup>    | -                              |          |            |                  |  |



**COMMENTS:** Clarithromycin resistance due to inducible erm gene

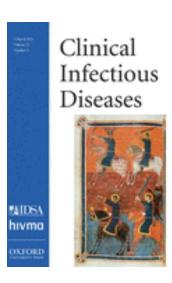
## Weight graph over time



#### Case Presentation








- Patient informed that treatment was unlikely to be curative, and associated with many side effects – she elects to be monitored
- 6 months later, she reconsiders
- Admitted to hospital and started on imipenem, amikacin, linezolid, and azithromycin; citalopram d/c'd
- Course notable for SSRI withdrawal (linezolid → tedizolid), amikacin-induced increased creatinine, oral thrush, and further weight loss
- Oral therapy of tedizolid, azithromycin, and clofazimine continued for 4 months after initial 1 month IV course – ultimately stopped due to side effects
- Gradual decline in exercise capacity, functional status, weight continue

### M abscessus spp pulmonary infection



- Organism has extensive drug resistance
  - Subspecies M abscessus and M bolletii intrinsically resistant to macrolides due to inducible erm41 gene; not present in M massiliense
- Medical treatment complex and rarely curative
  - Typical regimen starts with two parenteral agents for 8 weeks, e.g., imipenem or cefoxitin plus amikacin, with additional oral agents (linezolid, azithromycin, clofazimine) – oral regimen alone continued thereafter
- Consultation with thoracic surgery for localized disease –
   best chance at cure



## Treatment and Outcomes differ by species

| NTM               | Drugs                                             | Duration             | Expected Cure                                                                   |
|-------------------|---------------------------------------------------|----------------------|---------------------------------------------------------------------------------|
| M kansasii        | INH or <u>macrolide</u> Ethambutol Rifampin       | >12 months           | 95%                                                                             |
| M avium complex   | Macrolide<br>Ethambutol<br>Rifampin               | >12 months           | 56%-85%, depends on extent of disease and macrolide susceptibility; 30% relapse |
| M abscessus group | Macrolide Imipenem Amikacin Other oral agents (?) | As long as tolerated | 25% if macrolide resistant, up to 80% if sensitive                              |

## Additional Therapies for NTM Pulmonary Disease

- Inhaled liposomal amikacin (if S- amikacin)
- Bedaquiline
- Linezolid and tedizolid
- Clofazimine
- Meropenem-vaborbactam
- Omadacycline

Olivier KN, et al. Am J Respir Crit Care Med. 2017;195:814-823. Yagi K, et al BMC Infect Dis 2017 Aug 9;17(1):558. Vesenbeckh S, et al. European Respiratory Journal 2017; Winthrop KL, et al Eur Respir J. 2015;45:1177-1179. Martiniano SL et al. Chest 2017;152:800-809; Philley JV, et al. Chest. 2015;148:499-506. Pearson J, et al. Open Forum Infect Dis 2020.

#### Bacteriophages on the horizon



Open Forum Infectious Diseases

BRIEF REPORT

Nebulized Bacteriophage in a Patient With Refractory *Mycobacterium abscessus* Lung Disease

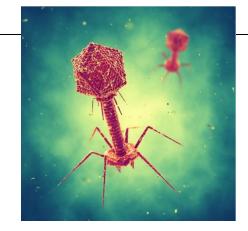
Rebekah M. Dedrick, <sup>1,a</sup> Krista G. Freeman, <sup>1,a</sup> Jan A. Nguyen, <sup>2,a</sup> Asli Bahadirli-Talbott, <sup>2</sup> Mitchell E. Ca<u>rdin. <sup>2</sup> Madison Cristinziano. <sup>1</sup> Bailey E. Smith. <sup>1</sup> Soowan Jeong. <sup>2</sup> Elisa H. Ignatius. <sup>3,4</sup> Ch</u>

Volume 185, Issue 11, 26 May 2022, Pages 1860-1874.e12

JOURNAL ARTICLE ACCEPTED MANUSCRIPT

Phage Therapy of Mycobacterium Infections: Compassionate-use of Phages in Twenty Patients with Drug-Resistant Mycobacterial Disease 3

Rebekah M. Dedrick, Bailey E. Smith, Madison Cristinziano, Krista G. Freeman, Deborah Jacobs-Sera, Yvonne Belessis, A. Whitney Brown, Keira A. Cohen, Rebecca M. Davidson, David van Duin ... Show more Author Notes


Clinical Infectious Diseases, ciac453, https://doi.org/10.1093/cid/ciac453

Published: 09 June 2022 Article history ▼

Article

Host and pathogen response to bacteriophage engineered against *Mycobacterium abscessus* lung infection

Jerry A. Nick <sup>1, 2, 9</sup> R M, Rebekah M. Dedrick <sup>3</sup>, Alice L. Gray <sup>2</sup>, Eszter K. Vladar <sup>2</sup>, Bailey E. Smith <sup>3</sup>, Krista G. Freeman <sup>3</sup>, Kenneth C. Malcolm <sup>1</sup>, L. Elaine Epperson <sup>4</sup>, Nabeeh A. Hasan <sup>4</sup>, Jo Hendrix <sup>4, 5</sup>, Kimberly Callahan <sup>4</sup>, Kendra Walton <sup>4</sup>, Brian Vestal <sup>4</sup>, Emily Wheeler <sup>1</sup>, Noel M. Rysavy <sup>1</sup>, Katie Poch <sup>1</sup>, Silvia Caceres <sup>1</sup>, Valerie K. Lovell <sup>1</sup> ... Rebecca M. Davidson <sup>4</sup>

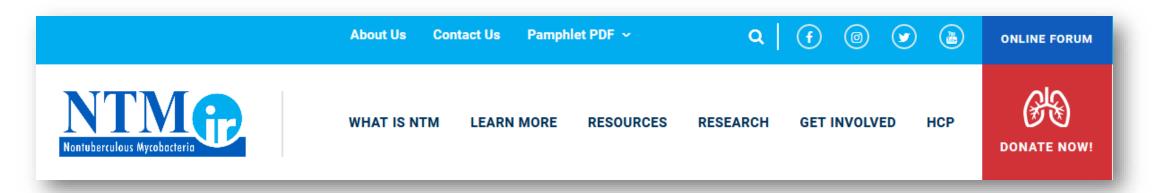


## Patient education is vital! Reassure but temper expectations carefully

- Reassure that they are not contagious to others
- Stopping even one drug could risk treatment failure, resistance
- Drug toxicities are common, but can be managed with staggered start, dose-adjustments, other strategies
- Clinical improvement may take several weeks
- Monitoring is critical weight, blood tests (CBC, metabolic panel), sputum assessments (every 1-2 months until negative), eye exams (every 3-6 months while on ethambutol)
- F/u imaging should be deferred until end of treatment or for clinical relapse – do not expect all abnormalities to resolve
- Treatment is not a lifetime cure reinfection may occur



# Patient counseling about prevention of exposure and disease progression


- Use showerhead with large diameter stream
- Maintain water in hot water heater > 130F
- Avoid hot tubs, spas, especially indoors
- Use distilled water in humidifiers and CPAP machines
- Get evaluated and treated for GERD
- Head of bed elevated while sleeping
- Mask while gardening
- Airway clearance strategies here's where you can help us!





https://impact-be.com/

## NTMInfo.org: Useful resource for patients and their families



# NTM Pulmonary Disease – Much Still to Learn, With Many Unanswered Questions!

- Who are the best candidates for treatment?
- Would treatment of mild disease prevent later complications, or just expose patient to drug toxicity and select for resistance?
- What is the optimal frequency of imaging?
- What is the best way to prevent disease?
- What are the most effective and safest regimens?
- Does NTM cause low BMI, or is a low BMI somehow predisposing to NTM?
- Who should undergo genetic testing?
- Who should be referred for surgery?
- How can Pulmonary and ID best collaborate on these challenging cases?

#### Pulmonary NTM disease – Take-home points

- Suspect pulmonary NTM in any patient with chronic, recurrent symptoms unresponsive to short courses of antibiotics
  - Be especially suspicious in susceptible hosts (bronchiectasis, women with low BMI, COPD, CF)
  - Watch out for TNF-blockers
- Confirm diagnosis by incorporating clinical and microbiologic data no rush to treat
- Prolonged combination therapy avoid macrolide monotherapy
- Team approach with your ID friends and colleagues