

State of the Art in Management of Challenging Pleural Effusions

Mājid Shafiq, MD MPH
Assistant Professor of Medicine
Medical Director, Interventional Pulmonology
Assistant Fellowship Director for Procedural Education

mshafiq@bwh.harvard.edu

Disclosures

- Scientific Advisory Board
 - Ambu A/S (one of the manufacturers of single-use bronchoscopes)

Outline (learning objectives)

- 1. Working up unexplained pleural exudates
- 2. Managing recurrent, symptomatic pleural effusions
- 3. Managing complicated pleural infections

Working up an unexplained pleural exudate

Definition of unexplained exudate:

When Light's criteria indicates an <u>exudate</u> and the clinical picture and additional labs (e.g., micro, cytology, flow cytometry) fail to definitively identify a cause

> 3 most common pearls to keep in mind:

1. Many transudates are falsely classified as exudates (pseudo-exudates)

- Is the clinical picture fitting for a transudate?
 - PMH (CHF/cirrhosis/renal failure), exam (fluid overload), bilaterality, serum NT pro-BNP elevated?
- Did the patient recently receive diuretic therapy?
- Is the effusion responsive to diuretic therapy?
- Is the effusion exudative only per protein criteria?
 - No elevated LDH?
 - No neutrophilia?
 - Cholesterol levels <45mg/dl? (typically elevated in exudates)
 - Serum fluid albumin gradient > 1.2g/dl?

2. G stain and cultures are not great at catching infection [approx. 50% sensitivity]

- Keep the entire clinical picture in mind when arriving at the presumptive diagnosis
- Imaging may show:
 - Concurrent pneumonia | Advanced cases: Split pleura sign and/or loculated effusion

Split pleura sign with enhancing and thickened and easily discernable pleural layers

2. G stain and cultures are not great at catching infection [approx. 50% sensitivity]

- Keep the entire clinical picture in mind when arriving at the presumptive diagnosis
- Imaging may show:
 - Concurrent pneumonia | Advanced cases: Split pleura sign and/or loculated effusion
- Pleural fluid analysis may show:
 - ✓ Neutrophilic predominance (not always in subacute infection)
 - ✓ In advanced disease:
 - Low pH, glucose
 - Frank pus
 - ♦ (+) G stain or culture (±PCR; not widely available)
 - Negative G stain or culture DOES NOT rule out pleural infection

Maskell N, et al. NEJM 2005

3. Pleural fluid cytology is not great at catching malignancy [approx. 50-60% sensitivity]

- To ensure optimal pleural fluid cytology yield: Send at least 25ml! (BTS)
- Repeat pleural fluid cytology: Only modest ↑ in pooled sensitivity
- Pleural biopsy: Approx 95% sensitivity
 - Medical pleuroscopy (mod sedation, spontaneous breathing) vs. VATS (GA/ETT)
 - Similar safety profile and diagnostic performance
 - \prectriction LOS and healthcare costs? [single-center study in Toronto; MP cases done outside of OR]

Outline

- 1. Working up unexplained pleural exudates
- 2. Managing recurrent, symptomatic pleural effusions
- 3. Managing complicated pleural infections

Managing recurrent, symptomatic pleural effusion: Options at hand

- OUTPATIENT OR INPATIENT: PRN thoracentesis
- INPATIENT: Chemical pleurodesis via chest tube (or thoracoscopically)
 - Talc poudrage introduced by Bethune in 1935
 Bethune, N. J Thorac Cardiovasc Surg, 1935
 - Contraindicated in case of incomplete lung expansion
- OUTPATIENT: Tunneled, indwelling pleural catheters (IPCs)
 - FDA approval: 1997 | First RCT published: 1999

Putnam JB, et al. Cancer, 1999

OUTPATIENT: IPC-Plus protocol (talc via IPC)

Bhatnagar, et al. N Engl J Med, 2018

Recurrent malignant pleural effusion:

Encouraging trends and need for improvement

- 2004 2014 NIS study: Shift to outpatient care, presumably 2/2 IPCs > pleurodesis
 - Annual hospitalizations: 38,865 -> 23,965
 - Median LOS: 7.7 days -> 6.3 days
 - Annual hospital charges: \$1.51 billion -> \$1.37 billion

Shafiq M, et al. Respiration, 2020

- 2007 2011 SEER-Medicare study: Only 24% of patients with rapidly recurrent, symptomatic MPE getting a <u>definitive</u> procedure (i.e., either IPC or pleurodesis) vs. another thoracentesis
 - associated with fewer ER visits, fewer pneumothorax episodes

Ost D, et al. Chest, 2018

Moral: Consider definitive treatment (e.g., IPC) at first recurrence (vs. repeat thora)!

Recurrent **non-malignant** pleural effusion:

Options aplenty

- PRN thoracentesis for symptom control
- Definitive procedure (IPC, pleurodesis) for symptom control

- Steps 1, 2, and 3: Treat the underlying cause (if applicable)
 - Exudates
 - Steroids or other immunosuppressive agents
 - Transudates
 - Management of fluid overload (water/Na restriction, diuresis, etc.)
 - Optimization of dialysis regimen
 - TIPS or liver transplant

Additional considerations for managing chylothorax

• Low output (<1L/day) (e.g., 2/2 lymphoma)

• High output (>1L/day) (usu. post-surgical esp. esophagectomy)

- Staged approach often appropriate:
- 1. Systemic therapy (if lymphoma)
- Dietary modifications (low-fat diet, MCT only, or NPO/TPN)
- 3. Somatostatin/octreotide
- 4. Thoracic duct ligation or embolization

- Conservative measures likely to fail:
- Often needs thoracic duct ligation or embolization

Outline

- 1. Working up unexplained pleural exudates
- 2. Managing recurrent, symptomatic pleural effusions
- 3. Managing complicated pleural infections

Management of Adults with Pleural Infection

- The Big Picture
- Antibiotic therapy
- Source control: Tube thoracostomy
- Source control: Beyond tube thoracostomy

So, you're dealing with a pleural infection. What's the Big Picture for management?

- Simple parapneumonic effusion: Antibiotics alone may work
 - Must follow up radiographically to resolution!

- Complicated parapneumonic effusion: Source control is key; tube thoracostomy imperative!
 - ~20% of cases: Need additional measures to enact complete drainage

Management of Adults with Pleural Infection

- The Big Picture
- Antibiotic therapy
- Source control: Tube thoracostomy
- Source control: Beyond tube thoracostomy

Antibiotic therapy for pleural infection

- Antibiotic choice: Often empiric if culture unrevealing (consider ID consultation)
 - Community-acquired:
 - Polymicrobial, oral flora esp. anaerobes
 - Staph aureus
 - [not always the usual CAP suspects!]
 - Hospital-acquired:
 - MDR (MRSA, GNRs)
 - Anaerobes once again
- Antibiotic duration: No robust data to guide optimal length
 - BTS 2010 guidelines recommended at least 3 weeks
 - BTS 2023 guidelines did not address this question (consider ID consultation)

Management of Adults with Pleural Infection

- The Big Picture
- Antibiotic therapy
- Source control: Tube thoracostomy
- Source control: Beyond tube thoracostomy

Achieving source control: Tube thoracostomy best practices

- Size doesn't matter
 - (or does it?)
 - No RCTs, but data [and BTS 2023 guidelines] suggest ≤14Fr (e.g., pigtails)
- Flushing matters
 - (or maybe not?)
 - Oft-quoted best practice: 10-30cc saline q6-8h
- Suction matters
 - (or maybe not?)
 - Common practice: -20 or -10 cm H2O

Management of Adults with Pleural Infection

- The Big Picture
- Antibiotic therapy
- Source control: Tube thoracostomy
- Source control: Beyond tube thoracostomy

Achieving source control: When tube thoracostomy is not enough

- TPA/DNase
 - via chest tube
- Thoracic surgery

More about TPA/DNase

- The What:
 - Intrapleural 5mg DNase + 10mg TPA BID x 3 days
 - Dwell time of each administration (4/day): 1 hour
 - CT chest @ baseline and post-treatment
- The Why:
 - MIST-2 RCT:
 - ↓ surgical referral for unresolved infection at 3mo (4% vs. 16%)
 - Decreased LOS (-6.7 days [95% CI -12.0 to -1.9]; p = 0.006)
 - 6% serious but nonfatal AEs (hemothorax, hemoptysis)

How to administer TPA/DNase (or flush saline) through a pigtail chest tube

Side port with a clamp
(Arrow® Percutaneous Cavity Drainage Catheter)

Side port connected to 3-way stop-cock (Cook® Wayne Pneumothorax Catheter)

Thoracic surgery for source control

- Commonly VATS or RATS, sometimes open thoracotomy
 - Debridement/washout (uncommonly via medical pleuroscopy)
 - Debridement and evacuation of infected material
 - Decortication
 - If visceral pleura developed a thickened rind
 - In order to allow adequate lung re-expansion

What's the best way to treat unresolving pleural infection: A trial of TPA/DNase or early thoracic surgery?

- An age-old question!
- Sir William Osler (1849 1919)
 - Died during the Spanish flu pandemic from a superadded pleural infection
 - Autopsy report:
 - "unresolved pneumonia,
 - multiple lung abscesses and
 - an empyema"

Credit: Osler Library of the History of Medicine, McGill University.

Osler preferred surgery to medicine for treatment of unresolving pleural infection

- "Empyema needs three inches of cold steel instead of the fool of a physician"
- Caveats
 - 1. There were no antibiotics in his era
 - 2. He did not get a chest tube
 - Let alone TPA/DNase
 - 3. He died from massive post-op hemorrhage
 - (Following open surgical drainage)
 - But, there was no VATS or RATS in his era either!

Credit: Osler Library of the History of Medicine, McGill University.

What's better for unresolving pleural infection: A trial of TPA/DNase or early thoracic surgery?

- Nearly equivalent cost-effectiveness
- Cochrane review of limited data: Early VATS may reduce LOS
- One possible approach:
 - Consult thoracic surgery early if pleural infection suspected; don't take too much comfort in (-) fluid G stain & culture as it may forever be (-)!
 - Late referral associated with higher conversion to thoracotomy
 - ?VATS upfront for worse prognosis (if surgical candidate)

Shipe et al. Ann Thor Surg 2020 Cochrane Review 2017. https://doi.org/10.1002/14651858.CD010651.pub2

Prognosticating pleural infection patients: The RAPID score

- Prospective validation study (PILOT):
 - RAPID score predicts 3-month mortality
- > Low-risk (1-2): 2.3%
- > Medium (3-4): 9.2%
- > High-risk (5+): 29.3%

